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Abstract:  In this paper, we have mathematically analyzed the problem of groundwater flow given by Pavlovsky [1] by the method 

of two parameter singular perturbation with variable coefficient. The differential system governing the groundwater flow, yields a 

second order linear differential equation in which the coefficient of first and second order derivative consists of small parameter 

together with permeability factor. The constant term in the equation also consists a permeability factor. To analyze the problem we 

have, here, considered the permeability of the soil as a function of both time and special coordinate. Here, in this paper, we have 

discussed the problem for the flow of groundwater flow in heterogeneous porous media on a sloping bedrock. 

 

Index Terms - heterogeneous porous, ground water flow, porous media, singular perturbation. 

I. INTRODUCTION 

In this paper, we have mathematically analyzed the problem of groundwater flow by the method of two parameter singular 

perturbation with variable coefficient. The differential system governing the groundwater flow, yields a second order linear differential 

equation in which the coefficient of first and second order derivative consists of small parameter together with permeability factor. 

The constant term in the equation also consists a permeability factor. To analyze the problem we have, here, considered the 

permeability of the soil as a function of both time and special coordinate. Here, in this paper, we have discussed the problem for the 
flow of groundwater flow in heterogeneous porous media on a sloping bedrock. 

The seepage problem of groundwater in homogeneous soil on slightly inclined bedrock has been discussed by Pavlovsky [1]. 

He has discussed four different cases, two of these the flow proceeds down the bedrock slope and in the other two it proceeds up the 

slope. In this work, we consider the seepage of groundwater down a slopping bedrock in soil which is heterogeneous in vertical 

direction. Water, from the head reservoir, flows into adjacent heterogeneous soil standing on the inclined bedrock and after seeping 

over considerable distance falls into a trail reservoir. Verma [2] has found that free surface, for seepage in the heterogeneous soil on 

an inclined bedrock is represented by an arc of rectangular hyperbola which is contrary to that of free surface found by Pavlovsky for 

homogeneous soil. Verma [5] has proved that the free surface for seepage in a two layered soil with an inclined boundary is a falling 

surface represented by an arc of rectangular whose concavity is downwards. But, because of our particular interest in analytical results, 

we have applied a two-parameter singular perturbation method with variable coefficients. We are particularly interested in determining 

the analytical solution by applying the two-parameter singular perturbation method, its convergence and the existence of the solution. 

II. STATEMENT OF THE PROBLEM 

Water from the head reservoir flows into adjacent soil which stands on an inclined bedrock and exhibits the heterogeneity in 

the vertical direction. After seeping over considerable distance it falls into tail reservoir. Choose a horizontal line at the bottom of the 

tail reservoir as the x-axis, a vertical line beside it as z-axis. The inclined boundary is the line 𝑧 = −𝑚𝑋, where m = tanα is the slope. 
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III. MATHEMATICAL MODELLING AND GOVERNING EQUATIONS 

The seepage velocity u is given by Darcy’s law as 

𝑢 = −𝐾(𝑧)
𝜕ℎ

𝜕𝑋
   (3.1) 

Where h is the piezometric (hydraulic) head and K(z) the seepage coefficient of the porous medium which varies with z. 

Since the flow of groundwater takes place over considerable distance, the analysis may be based on hydraulic theory. In 

hydraulic theory [3] the piezometric head ‘h’ is equal to height of the free surface (if we neglect the atmospheric pressure) 

and the flow elements depends on X alone. The flow rate qx is given by 

𝑞𝑥 = − ∫ 𝐾(𝑧)
𝜕ℎ

𝜕𝑋
𝑑𝑧

ℎ

0
   (3.2) 

Where z=0 is the foot and z=h, the top of vertical section at a distance X for the 𝑞𝑥 is measured. 

The equation of continuity is for the phenomena is given by, 

 

𝑑𝑞𝑥

𝑑𝑋
= 0    (3.3) 

From equation (3.3) we have, 

𝑞𝑥 = Constant = q   (3.4) 

By the work of Polubarinova-Kochina [3] for definiteness, the seepage coefficient of flow region is given by  a continuous 

linear relationship of the form 𝐾(𝑧)  =  𝐾0(1𝑧) where K0 and  are some real constants, then equations (3.2) and (3.4) 

give 

𝑞 = −𝐾0
𝑑ℎ

𝑑𝑋
∫ (1 − 𝜆𝑧)𝑑𝑧

ℎ

−𝑚𝑋
 (3.5) 

Since 
𝑑ℎ

𝑑𝑋
 is independent of z, performing the integration, we get 

𝑞 = −𝐾0
𝑑ℎ

𝑑𝑋
|(ℎ + 𝑚𝑋) − (𝜆 2)(ℎ2 − 𝑚2𝑋2)|⁄      (3.6) 

So that 

𝑑𝑋

𝑑ℎ
= 𝑃(ℎ) + 𝑄𝑋 + 𝑅𝑋2  (3.7) 

where, 𝑃 = −
𝑘0

𝑞
|ℎ − (𝜆 2⁄ )ℎ2|   (3.8) 

𝑄 = −
𝑘0𝑚

𝑞
   (3.9) 

𝑅 = −
𝑘0𝜆𝑚2

2𝑞
   (3.10) 

Equation (3.7) is the generalized Riccati’s equation. To solve it let 

𝑋 = −
1

𝑅

1

𝑡

𝑑𝑡

𝑑ℎ
   (3.11) 

Using (3.11), equation (3.7) reduces to 

𝑑2𝑡

𝑑ℎ2 − 𝑄
𝑑𝑡

𝑑ℎ
+ 𝑃𝑅𝑡 = 0  (3.12) 

This is a second order differential equation whose solution has been found by applying a two-parameter singular 

perturbation technique [4]. 

We associate an appropriate initial and boundary condition to problem (3.12) as 

 

|

𝑡(ℎ0) = 𝑐           𝑎𝑡 𝑋 = 0 (𝑖. 𝑒. , ℎ = ℎ0)

𝑡(ℎ𝐿) = 𝑑           𝑎𝑡 𝑋 = 𝑋𝐿(𝑖. 𝑒. , ℎ = ℎ𝐿)
 (3.13) 

In the equation (3.12), Verma [2] has considered Q and R as constants. Here, we have considered permeability 'K0' as 

varying factor of soil and therefore, P, Q and R will be variable, in particular P, Q, R will be a function of special coordinate 

and time. 

Setting  𝑥 =
ℎ−ℎ0

ℎ𝐿−ℎ0
;     𝑓 =

𝑡

(𝑑−𝑐)(ℎ𝐿−ℎ0)2     (3.14) 

The problem (3.12-3.13) reduced to 
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𝜀
𝑑2𝑓

𝑑𝑥2+𝑎(𝑥)
 𝜇

𝑑𝑓

𝑑𝑥
− 𝑏(𝑥)𝑓 = 0  (3.15) 

 

𝑓(0) = 𝛼,                          𝑓(1) = 𝛽  (3.16) 

 Where  = 𝑞2, 𝑎(𝑥) = 𝑘0(𝑥, 𝑡),  = 𝑚𝑞𝐻, ℎ = ℎ𝐿 – ℎ0  

And  𝑏(𝑥) =
𝑘0(𝑥,𝑡)𝜆𝑚2

2
 (𝐻𝑥 + ℎ0) |

𝜆

2
(𝐻𝑥 + ℎ0) − 1|   For all 𝑥 ∈ [0,1], 𝑎(𝑥)  >  0, 𝑏(𝑥) > 0. 

Now the flow rate 'q' in the porous medium is very-very small and m=tan, the slope of the bedrock is also sufficient small. 

Therefore, we consider  and , defined above, as a perturbation parameter and hence keeping in mind the definition of a(x) 

and b(x), we apply the technique of two parameter singular perturbation method with variable coefficient. 

IV. ANALYTIC SOLUTION OF THE PROBLEM 

Here, we have considered (/2)  0 as 0 

The auxiliary polynomial equation for (3.15) is 

` 𝜀𝐷2 + 𝜇 𝑎(𝑥)𝐷 − 𝑏(𝑥) = 0  (4.1) 

With roots. 

   𝐷1(𝑥, 𝜇, 𝜀) =
1

𝜇
|

𝑏(𝑥)

𝑎(𝑥)
−

𝜀

𝜇2  
𝑏2(𝑥)

𝑎2(𝑥)
+ ⋯ | =

1

𝜇
𝑑1(𝑥, 𝜀 𝜇2)⁄  

   𝐷2(𝑥, 𝜇, 𝜀) = −(𝜇 𝜀⁄ ) |𝑎(𝑥) +
𝜀

𝜇2

𝑏(𝑥)

𝑎(𝑥)
−

𝜀2

𝜇4  
𝑏2(𝑥)

𝑎3(𝑥)
+ ⋯ | = −(𝜇 𝜀)⁄ 𝑑2(𝑥, 𝜀 𝜇2)⁄  

Now writing 

  𝑑1 (𝑥, 𝜀
𝜇2⁄ ) = ∑ 𝑑1𝑗

∞
𝑗=0 (𝑥)(𝜀 𝜇2)⁄

𝑗
 

  𝑑2 (𝑥, 𝜀
𝜇2⁄ ) = ∑ 𝑑2𝑗

∞
𝑗=0 (𝑥)(𝜀 𝜇2)⁄

𝑗
 

  Here both d1 and d2 are positive for (𝜀 𝜇2)⁄  sufficiently small. Since the root 
1

𝜇
𝑑1 of (4.1) tends to  as 

0, we associate with it, a boundary layer at x=1. While we associate a boundary layer at x=0 with root (/)d2 which 

tends to   as 0. 

Thus, we set 

 𝑓(𝑥) = 𝑒𝑥𝑝. |
1

𝜇
∫ 𝑑1(𝑠, 𝜀 𝜇2)⁄ 𝑑𝑠

𝑋

1
 𝛼(𝑥, 𝜇)| + 𝑒𝑥𝑝. |−(𝜇 𝜀⁄ ) ∫ 𝑑2(𝑠, 𝜀 𝜇2)⁄ 𝑑𝑠

𝑥

0
 𝛽(𝑥, 𝜇)|  (4.2) 

Substituting (4.4.2) in (4.3.15) we get, 

|𝜀𝛼′′ +  
2𝜀

𝜇
𝑑1𝛼′ +

𝜀

𝜇
𝑑1

′ 𝛼 + 𝜇𝑎(𝑥)𝛼′ + (
𝜀

𝜇2 𝑑1
2 + 𝑎(𝑥)𝑑1 − 𝑏(𝑥)) 𝛼| X 𝑒𝑥𝑝. |

1

𝜇
∫ 𝑑1(𝑠, 𝜀 𝜇2)𝑑𝑠⁄

𝑥

1
| 

+|𝜀𝛽′′ − 2𝜇𝑑2𝛽′ − 𝜇𝑑2
′ 𝛽 +  𝜇 𝑎(𝑥)𝛽

′+(
𝜇2

𝜀
𝑑2

2−
𝜇2

𝜀
𝑎(𝑥)𝑑2−𝑏(𝑥))𝛽|

 X 𝑒𝑥𝑝. |−
𝜇

𝜀
∫ 𝑑2(𝑠, 𝜀 𝜇2)𝑑𝑠⁄

𝑥

0
| = 0  (4.3) 

Keeping in mind the definition of d1 and d2 we take 

 

𝜀

𝜇
𝛼′′ +

2𝜖

𝜇2 𝑑1𝛼′ +
𝜀

𝜇2 𝑑1
′ 𝛼 + 𝑎(𝑥)𝛼′ = 0  (4.4) 

 

𝜀

𝜇
𝛽′′ − 2𝑑2𝛽′ + 𝑑2

′ 𝛽 + 𝑎(𝑥)𝛽′ = 0    (4.5) 

Where we let, 

𝛼(𝑥, 𝜇) = ∑ 𝑎𝑚𝑛(𝑥)(𝜀 𝜇2)⁄
𝑚

(𝜀 𝜇2)⁄
𝑛

= 𝐴(𝑥, 𝜀 𝜇⁄ , 𝜀 𝜇2)⁄∞
𝑚,𝑛=0     (4.6) 

𝛽(𝑥, 𝜇) = ∑ 𝑏𝑚𝑛(𝑥)(𝜀 𝜇)⁄ 𝑚
(𝜀 𝜇2)⁄

𝑛
= 𝐵(𝑥, 𝜀 𝜇⁄ , 𝜀 𝜇2)⁄∞

𝑚,𝑛=0      (4.7) 

Substituting these results in (4.4) and (4.5) and then equating the like powers of the small parameter (𝜀 𝜇)⁄  and (𝜀 𝜇2)⁄ , we 

get 

  𝑎(𝑥)𝑎𝑚−1,𝑛
′′ −  2 ∑ 𝑎𝑚,𝑘

′  𝑑1𝑛−𝑘−1
− ∑ 𝑎𝑚,𝑘𝑑1𝑛−𝑘−1

′𝑛−1
𝑘=0

𝑛−1
𝑘=0  

  (𝑎(𝑥)𝑏𝑚𝑛)′ =  𝑏𝑚−1,𝑚
′′ − 2 ∑ (𝑏𝑚

𝑛−1
𝑘=0 , 𝑘𝑑2𝑛−𝑘

)′ + ∑ 𝑏𝑚,𝑘𝑑2𝑛−𝑘

′𝑛−1
𝑘=0   

Thus, each amn and each a(x)bmn can be successively determined within the additive constants amn and bmn. In particular 
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   𝑎00(𝑥) = 𝜆00 

  𝑎01(𝑥) = −𝜆00 ∫
1

𝑎(𝑠)
 (

𝑎(𝑠)

𝑎(𝑏)
)

′

𝑑𝑠 + 𝜆01
𝑥

1
 

  𝑎10(𝑥) = 𝜆10 

  𝑏00(𝑥) =
𝜎00

𝑎(𝑥)
 

  𝑏01(𝑥) =
1

𝑎(𝑥)
|−2𝜎00

𝑏(𝑥)

𝑎2(𝑥)
+ 𝜎00 ∫

1

𝑎(𝑠)
 (

𝑏(𝑠)

𝑎(𝑠)
)

′

𝑑𝑠 + 𝜎01
𝑥

0
  

  𝑏10(𝑥) =
1

𝑎(𝑥)
|𝜎00 (

1

𝑎(𝑥)
)

′

+ 𝜎10| 

Now 

  𝑓(0) = 𝐴 (0, 𝜀
𝜇⁄ , 𝜀

𝜇2⁄ )  𝑒𝑥𝑝. |
1

𝜇
∫ 𝑑1 (𝑠, 𝜀

𝜇2⁄ ) 𝑑𝑠
0

1
| 

   + ∑ 𝑏𝑚𝑛(0)(𝜀
𝜇⁄ )

𝑚
(𝜀

𝜇2⁄ )
𝑛

∞
𝑚,𝑛=0  

Since,  𝐴 (10, 𝜖
𝜇⁄ , 𝜀

𝜇2⁄ ) 𝑒𝑥𝑝. |
1

𝜇
∫ 𝑑1 (𝑠, 𝜀

𝜇2⁄ ) 𝑑𝑠
0

1
|  is exponentially small, we select 

𝜎00 = 𝑎(0)𝑓(0) 

𝜎𝑚𝑛 = −𝑏𝑚−1,𝑛
′ (0) 

Which implies that bmn(0)=0 

Similarly 

  𝑓(1) = ∑ 𝜆𝑚𝑛(𝜀
𝜇⁄ )

𝑚
(𝜀

𝜇2⁄ )
𝑛

∞
𝑚,𝑚=0 + 𝐵 (1, 𝜀

𝜇⁄ , 𝜀
𝜇2⁄ ) 𝑒𝑥𝑝. |−

𝜇

𝜀
∫ 𝑑2 (𝑠, 𝜀

𝜇2⁄ ) 𝑑𝑠
1

0
| 

We choose, f(1)=00;   mn=0, otherwise using the above results in the equation (4.2), we get 

𝑓(𝑥) = 𝑓(1) [1 −
𝜀

𝜇2  ∫
1

𝑎(𝑠)
 [

𝑏(𝑠)

𝑎(𝑠)
]

′

+
𝜀

𝜇
0 + ⋯

𝑥

1
] X 𝑒𝑥𝑝. [

1

𝜇
∫ 𝑑1 (𝑠, 𝜀

𝜇2⁄ ) 𝑑𝑠
𝑥

1
] 

+
𝑎(0)𝑓(0)

𝑎(𝑥)
[1 + 𝜀

𝜇2⁄  (−2
𝑏(𝑥)

𝑎2(𝑥)
+

2𝑏(0)

𝑎2(0)
) + ∫

1

𝑎(𝑠)
[

𝑏(𝑠)

𝑎(𝑠)
]

′

𝑑𝑠) +  
𝜀

𝜇
(

1

𝑎(𝑥)
)

′

− (
1

𝑎(𝑥)
)

′

+ ⋯ ]
𝑥

0
X 𝑒𝑥𝑝. [−

𝜇

𝜀
∫ 𝑑2 (𝑠, 𝜀

𝜇2⁄ ) 𝑑𝑠
𝑥

0
]

            (4.8) 

Where , , a(s) and b(s) are the known functions. 

V. UNIQUENESS AND EXISTENCE OF SOLUTION: 

In this section, we prove the existence of the boundary value problem (3.15-16) has a unique solution f(x). 

Consider amn(x) and bmn(x) defined as, above in (4.6-4.7). 

We set 

𝑓(𝑥) = | ∑ 𝑎𝑚𝑛(𝑥)(𝜀
𝜇⁄ )

𝑚
(𝜀

𝜇2⁄ )
𝑛

𝑚,𝑛≥0
𝑚+𝑛≤𝑁

|  𝑒𝑥𝑝. |∫ 𝑑1 (𝑠, 𝜀
𝜇2⁄ ) 𝑑𝑠

𝑥

1

|

+ | ∑ 𝑏𝑚𝑛(𝑥)(𝜀
𝜇⁄ )

𝑚
(𝜀

𝜇2⁄ )
𝑛

𝑚,𝑛≥0
𝑚+𝑛≤𝑁

|  𝑒𝑥𝑝. |−
𝜇

𝜀
∫ 𝑑2 (𝑠, 𝜀

𝜇2⁄ ) 𝑑𝑠
𝑥

0

| + (𝜀
𝜇2⁄ )

𝑁+1

𝑇𝑁(𝑋, 𝜇) 

Where 𝑇𝑛 = 0() for 𝑥 ∈  [0, 1] 

Introduce 𝑧(𝑥, )  =  𝑎(𝑥)𝑓′ –  𝑏(𝑥)𝑓 then equation (4.6) implies that 

𝑧(𝑡) = 𝑧(0)𝑒𝑥𝑝. |−
𝜇

𝜀
∫ 𝑎(𝑠)ℎ(𝑠, 𝜇, 𝜀)𝑑𝑠

𝑡

0

| −
1

𝜇
∫ 𝑓(𝑠)𝜃(𝑠, 𝑡, 𝜀, 𝜇)𝑑𝑠

𝑡

0

 

Where ℎ(𝑠, 𝜇, 𝜀) = 1 +
𝜀

𝜇2𝑎2(𝑠)
|𝑏(𝑠) − 𝜇𝑎′(𝑠)| 

And 

𝜃(𝑠, 𝑡, 𝜀, 𝜇) = |
𝑏2(𝑠) − 𝜇𝑎′(𝑠)𝑏(𝑠) + 𝜇𝑎(𝑠)𝑏′(𝑠)

𝑎(𝑠)
| 𝑒𝑥𝑝. |−

𝜇

𝜀
∫ 𝑎(𝑟)ℎ(𝑟, 𝜇, 𝜀)𝑑𝑟

𝑡

0

| 

Then 

𝑓(𝑥) = (1) |𝑒𝑥𝑝. (
1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)
𝑑𝑠

𝑥

1

)| −
𝑧(0)

𝜇
∫ |

1

𝑎(𝑡)
 𝑒𝑥𝑝. (

1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)
𝑑𝑠

𝑥

𝑡

)
1

𝑥

𝑋 𝑒𝑥𝑝. −
𝜇

𝜀
∫ 𝑎(𝑟)ℎ(𝑟, 𝜇, 𝜀)𝑑𝑟

𝑡

0

| 𝑑𝑡 
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+
1

𝜇2
∫ |

1

𝑎(𝑡)
 𝑒𝑥𝑝. (

1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)
𝑑𝑠

𝑥

𝑡

)
1

𝑥

𝑋 ∫ 𝑓(𝑠)𝜃(𝑠, 𝑡, 𝜀, 𝜇)𝑑𝑠
𝑡

0

| 𝑑𝑡 

Which, by evaluating at x=0 implies that 

−
𝑧(0)

𝜇
∫ |

1

𝑎(𝑡)
𝑒𝑥𝑝. | |(−

𝜇

𝜀
∫ |𝑎(𝑟)ℎ(𝑟, 𝜇, 𝜀) +

𝜀

𝜇2

𝑏(𝑟)

𝑎2(𝑟)

𝑡

0

|𝑑𝑟)|
1

0

𝑑𝑡 

= 𝑓(0) − 𝑓(1) 𝑒𝑥𝑝. |
1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)
𝑑𝑠

0

1

| 

−
1

𝜇2
∫ |

1

𝑎(𝑡)
 𝑒𝑥𝑝. (

1

𝜇
 ∫

𝑏(𝑠)

𝑎(𝑠)

0

𝑡

𝑑𝑠) ∫ 𝑓(𝑠)𝜃(𝑠, 𝑡, 𝜇, 𝜀)𝑑𝑠
𝑡

0

|
1

0

𝑑𝑡 

Now we introduce 

𝜃(𝑥, 𝜀, 𝜇) =
∫ |

1

𝑎(𝑡)
 𝑒𝑥𝑝. (

1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)
𝑑𝑠

𝑥

𝑡
)  𝑒𝑥𝑝. (−

𝜇

𝜀
∫ 𝑎(𝑟)ℎ(𝑟, 𝜇, 𝜀)

𝑡

0
) 𝑑𝑟|

1

𝑥

∫ |
1

𝑎(𝑡)
 𝑒𝑥𝑝. (−

𝜇

𝜀
∫ 𝑎(𝑟)ℎ(𝑟, 𝜇, 𝜀

𝑡

0
) +

𝜀

𝜇2

𝑏(𝑟)

𝑎(𝑟)
𝑑𝑟| 𝑑𝑡

1

0

 

And 

𝑓0(𝑥) = 𝑓(1)𝑒𝑥𝑝. (
1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)
𝑑𝑠

𝑥

1

) + 𝑄(𝑥, 𝜀, 𝜇) |𝑦(0) − 𝑦(1)𝑒𝑥𝑝. (
1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)
𝑑𝑠

0

1

)| 

Hence, we have 

 

𝑓(𝑥) = 𝑓0(𝑥) +
1

𝜇2
|∫ 𝑒𝑥𝑝. (

1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)

𝑥

𝑡
𝑑𝑠)

1

𝑥
−𝑄(𝑥, 𝜀, 𝜇) ∫ 𝑒𝑥𝑝. (

1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)
𝑑𝑠

0

𝑡
)

1

0
| 𝑋  |

1

𝑎(𝑡)
∫ 𝑓(𝑠)𝜃(𝑠, 𝑡, 𝜀, 𝜇)𝑑𝑠. 𝑑𝑡

𝑡

0
| 

             (5.1) 

Equation (5.1) can be solved by successive approximation, we define 

𝑓𝑗(𝑥) = 𝑓0(𝑥) +
1

𝜇2
|∫ 𝑒𝑥𝑝. (

1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)

𝑥

𝑡

𝑑𝑠)
1

𝑥

−𝑄(𝑥, 𝜀, 𝜇) ∫ 𝑒𝑥𝑝. (
1

𝜇
∫

𝑏(𝑠)

𝑎(𝑠)
𝑑𝑠

0

𝑡

)
1

0

| 𝑋  |
1

𝑎(𝑡)
∫ 𝑓𝑗−1(𝑥)𝜃(𝑠, 𝑡, 𝜀, 𝜇)𝑑𝑠. 𝑑𝑡

𝑡

0

| 

             (5.2) 

Interchanging the order, the integration in (5.2) and taking estimate, we can prove that, 

‖𝑓𝑗(𝑥) − 𝑓𝑗−1(𝑥)‖  ≤  
𝑀𝜀

𝜇2 ‖𝑓𝑗−1(𝑥) − 𝑓𝑗−2(𝑥)‖     (5.3) 

Where M is positive constant and ||.|| is supermom norm on [0,1]. Inequality (5.3) implies that the integral operator in (5.1) 

is contractive for (/2) sufficiently small. Thus 𝑓(𝑥) = limit
𝑗→∞

𝑓𝑗(𝑥) exists for all 𝑥 ∈ [0,1] for  sufficiently small and is 

unique solution of the boundary value problem. 

VI. ASYMPTOTIC CONVERGENCE OF THE SOLUTION 

Using the definitions of amn(x) and bmn(x), as defined in section (4.4), we have 

𝜀𝑇𝑁
′′ +  𝜇 𝑎(𝑥) 𝑇𝑁

′ −  𝑏(𝑥)𝑇𝑁 =  𝜇𝐶𝑁 (𝑥, 𝜇)   (6.1) 

Where CN(x,) is bounded. Moreover TN(0,) and TN(1,) are exponentially very small. The boundedness (TN/) follows 

by the maximum-minimum principal argument. 

Suppose 𝑇𝑁 has a non-zero maximum at 𝑥 ∈ [0,1] then 𝑇𝑁
′ (𝜉) = 0  and 𝑇𝑁

′′(𝜉) < 0   

Now 

 𝑏(𝜉) 𝑇𝑁(𝜉, 𝜇) ≤ −𝜀 𝑇𝑁
′′ (𝜉, 𝜇) −  𝜇 𝑎(𝜉) 𝑇𝑁

′ (𝜉, 𝜇) + 𝑏(𝜉)𝑇𝑁(𝜉, 𝜇) ≤ 𝜇𝐶𝑈  Where  𝐶𝑈 = max
𝑥𝜀|0,1|

𝐶𝑁(𝑥, 𝜇) 

 Hence, 𝑇𝑁(𝜉, 𝜇) ≤
𝜇𝐶𝑈

𝑏𝐿
,   Where 𝑏𝐿 = min

𝑥𝜀|0,1|
𝑏(𝑥) > 0  

 Similarly, if TN has negative minimum at 𝑥 ∈ [0,1] then 

 𝑇𝑁
′ (𝜉) = 0  ;  𝑇𝑁

′′(𝜉) > 0 ⟹  −𝑏(𝜉)𝑇𝑁(𝜉, 𝜇) ≤ 𝜀𝑇𝑁
′′(𝜉, 𝜇) + 𝜇 𝑎(𝜉)𝑇𝑁

′ (𝜉, 𝜇) −  𝑏(𝜉)𝑇𝑁(𝜉, 𝜇) ≤ 𝜇 𝐶𝑈 

 Therefore, 

𝑇𝑁(𝜉, 𝜇) ≥ −
𝜇𝐶𝑈

𝑏𝐿
 

 Since TN is exponentially small at x=0 and x=1, we have 
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|𝑇𝑁(𝑥, 𝜇)| ≤ 𝜇
𝐶𝑈

𝑏𝐿
  for all 𝑥 ∈ [0,1] 

 Hence solution converges to a finite limit. 

 

VII. CONCLUSION 

Verma [6] has proved that the free surface for seepage in a two layered soil with an inclined boundary is a falling surface 

represented by an arc of rectangular whose concavity is downwards. But, because of our particular interest in analytical results, we 

have applied a two-parameter singular perturbation method with variable coefficient. For definiteness we have assumed that the 

permeability of both the layered is a function of (x, t), i.e., permeability of the layered vary at each and every point of the media as 

time varies. We have discussed the solution of the problem and uniqueness and existence together with asymptotic convergence of 

the obtained general solution. Also, we have showed here that when the slope of the inclined boundary is small and the flow rate is 

sufficiently small, the free surface of water falls partly represented by St. line and partly represented by an arc of negative 
exponential curve 
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